首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1972篇
  免费   453篇
  国内免费   187篇
化学   1098篇
晶体学   101篇
力学   72篇
综合类   6篇
数学   26篇
物理学   1309篇
  2024年   2篇
  2023年   18篇
  2022年   51篇
  2021年   81篇
  2020年   84篇
  2019年   68篇
  2018年   62篇
  2017年   75篇
  2016年   139篇
  2015年   97篇
  2014年   127篇
  2013年   162篇
  2012年   165篇
  2011年   167篇
  2010年   120篇
  2009年   142篇
  2008年   153篇
  2007年   144篇
  2006年   142篇
  2005年   115篇
  2004年   89篇
  2003年   85篇
  2002年   55篇
  2001年   41篇
  2000年   49篇
  1999年   27篇
  1998年   17篇
  1997年   20篇
  1996年   22篇
  1995年   19篇
  1994年   20篇
  1993年   5篇
  1992年   2篇
  1991年   3篇
  1990年   7篇
  1989年   9篇
  1988年   1篇
  1987年   5篇
  1986年   4篇
  1985年   4篇
  1983年   8篇
  1982年   3篇
  1979年   2篇
  1957年   1篇
排序方式: 共有2612条查询结果,搜索用时 31 毫秒
21.
Industrialization undoubtedly boosts economic development and improves the standard of living; however, it also leads to some serious problems, including the energy crisis, environmental pollution, and global warming. These problems are associated with or caused by the high carbon dioxide (CO2) and sulfur dioxide (SO2) emissions from the burning of fossil fuels such as coal, oil, and gas. Photocatalysis is considered one of the most promising technologies for eliminating these problems because of the possibility of converting CO2 into hydrocarbon fuels and other valuable chemicals using solar energy, hydrogen (H2) production from water (H2O) electrolysis, and degradation of pollutants. Among the various photocatalysts, silicon carbide (SiC) has great potential in the fields of photocatalysis, photoelectrocatalysis, and electrocatalysis because of its good electrical properties and photoelectrochemistry. This review is divided into six sections: introduction, fundamentals of nanostructured SiC, synthesis methods for obtaining nanostructured SiC photocatalysts, strategies for improving the activity of nanostructured SiC photocatalysts, applications of nanostructured SiC photocatalysts, and conclusions and prospects. The fundamentals of nanostructured SiC include its physicochemical characteristics. It possesses a range of unique physical properties, such as extreme hardness, high mechanical stability at high temperatures, a low thermal expansion coefficient, wide bandgap, and superior thermal conductivity. It also possesses exceptional chemical characteristics, such as high oxidation and corrosion resistance. The synthesis methods for obtaining nanostructured SiC have been systematically summarized as follows: Template growth, sol-gel, organic precursor pyrolysis, solvothermal synthesis, arc discharge, carbon thermal reduction, and electrospinning. These synthesis methods require high temperatures, and the reaction mechanism involves SiC formation via the reaction between carbon and silicon oxide. In the section of the review involving the strategies for improving the activity of nanostructured SiC photocatalysts, seven strategies are discussed, viz., element doping, construction of Z-scheme (or S-scheme) systems, supported co-catalysts, visible photosensitization, construction of semiconductor heterojunctions, supported carbon materials, and construction of nanostructures. All of these strategies, except element doping and visible photosensitization, concentrate on enhancing the separation of holes and electrons, while suppressing their recombination, thus improving the photocatalytic performance of the nanostructured SiC photocatalysts. Regarding the element doping and visible photosensitization strategies, element doping can narrow the bandgap of SiC, which generates more holes and electrons to improve photocatalytic activity. On the other hand, the principle of visible photosensitization is that photo-induced electrons move from photosensitizers to the conduction band of SiC to participate in the reaction, thus enhancing the photocatalytic performance. In the section on the applications of nanostructured SiC, photocatalytic H2 production, pollutant degradation, CO2 reduction, photoelectrocatalytic, and electrocatalytic applications will be discussed. The mechanism of a photocatalytic reaction requires the SiC photocatalyst to produce photo-induced electrons and holes during irradiation, which participate in the photocatalytic reaction. For example, photo-induced electrons can transform protons into H2, as well as CO2 into methane, methanol, or formic acid. Furthermore, photo-induced holes can convert organic waste into H2O and CO2. For photoelectrocatalytic and electrocatalytic applications, SiC is used as a catalyst under high temperatures and highly acidic or basic environments because of its remarkable physicochemical characteristics, including low thermal expansion, superior thermal conductivity, and high oxidation and corrosion resistance. The last section of the review will reveal the major obstacles impeding the industrial application of nanostructured SiC photocatalysts, such as insufficient visible absorption, slow reaction kinetics, and hard fabrication, as well as provide some ideas on how to overcome these obstacles.   相似文献   
22.
23.
The demand for quick, accurate, and affordable point-of-care (POC) devices increases with the advancement in the dimensions of nanotechnology and digital interfaces (Internet of Things). The future of diagnostic requires the platform which can provide us the following benefits i. e., on-site detection, qualitative as well as quantitative analysis, easy to use, portable, low sample requirement, cost-effective, and have multiplexing proficiency. Multiplex biosensing platforms (MBPs) have the above following advantages so are going to be mostly used in various healthcare applications in near future. MBPs have the potential to fulfill the ‘ASSURED’ criteria specified by the World Health Organization (WHO) for remote-limited settings. This review paper focuses on miniaturized platforms that have multiplexing benefits for the bioanalysis of different clinical samples related to various healthcare applications. In addition to this, screening of pesticides, antibiotics, and hazardous metal ions with these surface-engineered devices has also been accounted in food and environmental samples. Some of the advanced techniques including microfluidics (Lab-on-a-chip), wearable smart devices, and CRISPR/Cas system for multiplexing applications are briefly described here. Furthermore, various needs, challenges, and prospects in commercializing these multiplexed surface-engineered devices have been discussed in this review.  相似文献   
24.
Graphene is scientifically and commercially important because of its unique molecular structure which is monoatomic in thickness, rigorously two-dimensional and highly conjugated. Consequently, graphene exhibits exceptional electrical, optical, thermal and mechanical properties. Herein, we critically discuss the surface modification of graphene, the specific advantages that graphene-based materials can provide over other materials in sensor research and their related chemical and electrochemical properties. Furthermore, we describe the latest developments in the use of these materials for sensing technology, including chemical sensors and biosensors and their applications in security, environmental safety and diseases detection and diagnosis.  相似文献   
25.
Chemical analysis based on colour changes recorded with imaging devices is gaining increasing interest. This is due to its several significant advantages, such as simplicity of use, and the fact that it is easily combinable with portable and widely distributed imaging devices, resulting in friendly analytical procedures in many areas that demand out-of-lab applications for in situ and real-time monitoring. This tutorial review covers computer vision-based analytical (CVAC) procedures and systems from 2005 to 2015, a period of time when 87.5% of the papers on this topic were published. The background regarding colour spaces and recent analytical system architectures of interest in analytical chemistry is presented in the form of a tutorial. Moreover, issues regarding images, such as the influence of illuminants, and the most relevant techniques for processing and analysing digital images are addressed. Some of the most relevant applications are then detailed, highlighting their main characteristics. Finally, our opinion about future perspectives is discussed.  相似文献   
26.
A chiral perylene diimide building block has been prepared based on an amine derivative of the amino acid L ‐phenylalanine. Detailed studies were carried out into the self‐assembly behaviour of the material in solution and the solid state using UV/Vis, circular dichroism (CD) and fluorescence spectroscopy. For the charged building block BTPPP, the molecular chirality of the side chains is translated into the chiral supramolecular structure in the form of right‐handed helical aggregates in aqueous solution. Temperature‐dependent UV/Vis studies of BTPPP in aqueous solution showed that the self‐assembly behaviour of this dye can be well described by an isodesmic model in which aggregation occurs to generate short stacks in a reversible manner. Wide‐angle X‐ray diffraction studies (WXRD) revealed that this material self‐organises into aggregates with π–π stacking distances typical for π‐conjugated materials. TEM investigations revealed the formation of self‐assembled structures of low order and with no expression of chirality evident. Differential scanning calorimetry (DSC) and polarised optical microscopy (POM) were used to investigate the mesophase properties. Optical textures representative of columnar liquid–crystalline phases were observed for solvent‐annealed samples of BTPPP. The high solubility, tunable self‐assembly and chiral ordering of these materials demonstrate their potential as new molecular building blocks for use in the construction of chiro‐optical structures and devices.  相似文献   
27.
28.
One of challenges existing in fiber‐based supercapacitors is how to achieve high energy density without compromising their rate stability. Owing to their unique physical, electronic, and electrochemical properties, two‐dimensional (2D) nanomaterials, e.g., molybdenum disulfide (MoS2) and graphene, have attracted increasing research interest and been utilized as electrode materials in energy‐related applications. Herein, by incorporating MoS2 and reduced graphene oxide (rGO) nanosheets into a well‐aligned multi‐walled carbon nanotube (MWCNT) sheet followed by twisting, MoS2‐rGO/MWCNT and rGO/MWCNT fibers are fabricated, which can be used as the anode and cathode, respectively, for solid‐state, flexible, asymmetric supercapacitors. This fiber‐based asymmetric supercapacitor can operate in a wide potential window of 1.4 V with high Coulombic efficiency, good rate and cycling stability, and improved energy density.  相似文献   
29.
Inspired by a Newton’s cradle device and interested in the development of redox‐controllable bimetallic molecular switches, a mixed‐valence thallium(III)/thallium(I) bis‐strap porphyrin complex, with TlIII bound out of the plane of the N core and TlI hung to a strap on the opposite side, was formed by the addition of TlOAc to the free base and exposure to indirect sunlight. In this process, oxygen photosensitization by the porphyrin allows the oxidation of TlI to TlIII. The bimetallic complex is dynamic as the metals exchange their positions symmetrically to the porphyrin plane with TlIII funneling through the macrocycle. Further exposure of the complex to direct sunlight leads to thallium dissociation and to total recovery of the free base. Hence, the porphyrin plays a key role at all stages of the cycle of the complex: It hosts two metal ions, and by absorbing light, it allows the formation and dissociation of TlIII. These results constitute the basis for the further design of innovative light‐driven bimetallic molecular devices.  相似文献   
30.
A hyper‐branched hybridization chain reaction (HB‐HCR) is presented herein, which consists of only six species that can metastably coexist until the introduction of an initiator DNA to trigger a cascade of hybridization events, leading to the self‐sustained assembly of hyper‐branched and nicked double‐stranded DNA structures. The system can readily achieve ultrasensitive detection of target DNA. Moreover, the HB‐HCR principle is successfully applied to construct three‐input concatenated logic circuits with excellent specificity and extended to design a security‐mimicking keypad lock system. Significantly, the HB‐HCR‐based keypad lock can alarm immediately if the “password” is incorrect. Overall, the proposed HB‐HCR with high amplification efficiency is simple, homogeneous, fast, robust, and low‐cost, and holds great promise in the development of biosensing, in the programmable assembly of DNA architectures, and in molecular logic operations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号